معرفی منشور 5 پهلو:
í نام شکل: منشور 5 پهلو
í یال های منشور: 'EE',DD',CC',BB',AA
í وجه منشور: هر کدام از مستطیل های جانبی را یک وجه منشور می نامند. 
í ارتفاع منشور: از آنجا که هر کدام از یال ها بر دو قاعده منشور عمود می باشند, لذا ارتفاع منشور با اندازه هر یک از یال ها برابر است.
í قاعده ی منشور: منشور دو قاعده دارد. ABCDE و 'A'B'C'D'E که دو پنج ضلعی مساوی اند.
رابطه های مهم:
ارتفاع × مساحت قاعده = حجم منشور
ارتفاع × محیط قاعده = مساحت جانبی منشور
مساحت دو قاعده + مساحت جانبی = مساحت کل منشور
استوانه:
نام شکلی است که دو قاعده دارد که دو دایره مساوی هستند و بر جانبی راست استوار است.

اگر مستطیل را حول طول آن دوران دهیم, شکل فضایی حاصل استوانه نامیده می شود. در این صورت طول مستطیل ارتفاع استوانه و عرض آن شعاع قاعده استوانه می باشد.

در شکل بالا مستطیل ABCD را حول طول آن دوران داده ایم و استوانه بوجود آمده است.
رابطه های مهم:
ارتفاع×مساحت قاعده(دایره) = حجم استوانه
ارتفاع×محیط قاعده(دایره) = مساحت جانبی استوانه
مساحت دو قاعده + مساحت جانبی = مساحت کل استوانه
هرم:
هرم در لغت به معنی سخت پیر گردیدن و کلان سال شدن است و در اصطلاح هندسه حجمی است که قاعده آن یک چند ضلعی و وجوه جانبی اش مثلثهایی باشند که همه به یک رأس مشترک(رأس هرم) منتهی می شوند.

معرفی هرم منتظم:
í نام شکل: هرم منتظم.
í رأس هرم: نقطه S
í ارتفاع هرم: پاره خطی است که از رأس هرم به مرکز قاعده ی هرم عمود است(SO)
í قاعده هرم: پنج ضلعی منتظم ABCDE
í سهم هرم: ارتفاع مثلث های جانبی, ارتفاع هر وجه جانبی هرم منتظم(SH).
í وجه هرم: هر یک از مثلث هایی که بدنه هرم را می پوشانند را یک وجه جانبی می نامیم.
í یال هرم: محل تقاطع هر دو وجه جانبی را یال هرم می نامیم. SE,SD,SC,SB,SA
رابطه های مهم: 
مخروط :
مخروط به معنی خراشیده شده ، تراشیده شده و خراطی شده است ودر اصطلاح هندسه حجمی است که از دوران مثلث قائم الزاویه حول یک ضلع آن به دست می آید . کله قند و کلاه بوقی نمونه هایی به شکل مخروط هستند.

نام شکل : مخروط
í رأس :نقطه ی s
í ارتفاع :پاره خط SO ضلعی که مثلث قائم الزاویه را حول آن دوران داده ایم تا مخروط بوجود آید.
پاره خطی است که از رأس مخروط بر صفحه ی قاعده ی آن عمود است . 
í قاعده ی مخروط : دایره c به مرکز O و شعاع oB را قاعده ی مخروط می نامیم.
í مولد مخروط :پاره خط SA یا SB ، وتر مثلث قائم الزاویه که مخروط را بوجود آورده است.
رابطه های مهم : 
کره :
کره به معنی گوی و آن چه که به شکل گوی باشد، است و در اصطلاح هندسه شکلی است که از دوران نیم دایره حول قطرش بوجود می آید . مانند توپ ، گوی چوگان

مرکز کره :نقطه ی O
í شعاع کره :R (فاصله ی نقاط روی سطح کره از مرکز کره) 
í دایره ی عظیمه :اگر یک کره را نصف کنیم، دایره ای که از نصف کردن کره بدست می آید،دایره عظیمه نام دارد .

رابطه های مهم :

نظرات شما عزیزان: